Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 1018


Home  | About Us | Editors | Search | Ahead Of Print | Current Issue | Archives | Submit Article | Instructions | Subscribe | Contacts | Login 
Year : 2020  |  Volume : 10  |  Issue : 4  |  Page : 170-176

Clinical implications of serum myoglobin in trauma patients: A retrospective study from a level 1 trauma center

1 Department of Surgery, Trauma Surgery, Hamad General Hospital, Doha, Qatar
2 Department of Clinical Research in Trauma and Vascular Surgery, Hamad General Hospital; Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
3 Department of Emergency, Hamad General Hospital, Doha, Qatar
4 Department of Surgery, Hamad General Hospital, Doha, Qatar
5 Department of Clinical Research in Trauma and Vascular Surgery, Trauma Surgery, Hamad General Hospital, Doha, Qatar

Correspondence Address:
Dr. Ayman El-Menyar
Department of Surgery, Trauma and Vascular Surgery, Clinical Research, Hamad General Hospital, Doha, P. O. Box 3050, Doha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/IJCIIS.IJCIIS_71_19

Rights and Permissions

Background: We aimed to study the clinical implication of high serum myoglobin levels in trauma patients. Methods: A retrospective analysis was conducted on data from trauma patients who were admitted to a level 1 trauma center between January 2012 and December 2015. A receiver operating characteristic (ROC) curve analysis was performed for the optimum myoglobin cutoff plotted against hospital length of stay of >1 week. Patients were divided into two groups (Group 1; low vs. Group 2; high myoglobin), and a comparative analysis was performed. Results: There were 898 patients who met the inclusion criteria with a mean age of 35.9 ± 14.6 years. Based on ROC, the myoglobin optimum cutoff was 1000 ng/ml (64% of patients were in Group 1 and 36% in Group 2). The mean myoglobin level was 328 ng/ml in patients with the Injury Severity Score (ISS) <15 versus 1202 ng/ml in patients with ISS ≥15 (P < 0.001). Patients in Group 2 had higher ISS (22.2 ± 10 vs. 18.8 ± 10), more musculoskeletal injuries (18.3% vs. 4.2%), more blood transfusion (74% vs. 39%), intubation (57% vs. 46.5%), and sepsis (12% vs. 7.3%). The length of hospital stays was significantly higher in Group 2, but mortality was comparable. High myoglobin levels had a crude odd ratio 2.41; 95% confidence interval (1.470–3.184) for a longer hospital stay with a positive predictive value of 89% and a specificity of 77%. Conclusions: One-third of the admitted trauma patients have elevated serum myoglobin level, which is associated with the prolonged hospital stay. The discriminatory power of myoglobin value of 1000 in trauma is fair, and further prospective assessments are needed.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded36    
    Comments [Add]    

Recommend this journal