Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 399


Home  | About Us | Editors | Search | Ahead Of Print | Current Issue | Archives | Submit Article | Instructions | Subscribe | Contacts | Login 
Year : 2019  |  Volume : 9  |  Issue : 4  |  Page : 182-186

Prone ventilation in H1N1 virus-associated severe acute respiratory distress syndrome: A case series

1 Department of Critical Care Medicine, Sunshine Hospital, Bhubaneswar, Odisha, India
2 Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Dr. Jyoti Narayan Sahoo
Department of Critical Care Medicine, Sunshine Hospital, Bhubaneswar, Odisha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/IJCIIS.IJCIIS_62_18

Rights and Permissions

Background: Management of H1N1 viral infection-associated acute respiratory distress syndrome (ARDS) has primarily been focused on lung protective ventilation strategies, despite that mortality remains high (up to 45%). Other measures to improve survival are prone position ventilation (PPV) and extracorporeal membrane oxygenation. There is scarcity of literature on the use of prone ventilation in H1N1-associated ARDS patients. Methods: In this retrospective study, all adult patients admitted to medical intensive care unit (ICU) with H1N1 viral pneumonia having severe ARDS and requiring prone ventilation as a rescue therapy for severe hypoxemia were reviewed. The patients were considered to turn prone if PaO2/FiO2ratio was <100 cmH2O and PaCO2was >45 cmH2O; if no progressive improvement was seen in PaO2/FiO2over a period of 4 h, then patients were considered to turn back to supine. Measurements were obtained in supine (baseline) and PPV, after 30–60 min and then 4–6 hourly. Results: Eleven adult patients with severe ARDS were ventilated in prone position. Their age range was 26–59 years. The worst PaO2/FiO2ratio range on the day of invasive ventilation was 48–100 (median 79). A total of 39 PPV sessions were done, with a range of 1–8 prone sessions per patient (median three sessions). Out of the 39 PPV sessions, PaO2/FiO2ratio and PaCO2responder were 38 (97.4%) and 27 (69.2%) sessions, respectively. The median ICU stay and mechanical ventilation days were 15 (range: 3–26) and 12 (range: 2–22) days, respectively. The common complication observed due to PPV was pressure ulcer. At ICU discharge, all except two patients survived. Conclusion: PPV improves oxygenation when started early with adequate duration and should be considered in all severe ARDS cases secondary to H1N1 viral infection.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded135    
    Comments [Add]    
    Cited by others 4    

Recommend this journal